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1. INTRODUCTION AND SUMVARY.

This paper describes a FORTRAN subroutine called WNEW, for apﬁro:dmating any

one of the following four integrals:

1.1) [t
(1.2) J: f(t)de (f not oscillatory, A finite) ; YT
ML Cuad
: B S
(1.3) r F(t)dt (F oscillatory, A finite) ; - L. wced
A Plutloiestaon____
B Py __ .
(L.4) J f(t)dt (A,B finite) . T
A e e e N L dewmnetum——————
Lkl i Snces
) ;1iand/on
We remark in view of (1.2) and (1.3) that special

JB £(t)de

-0

'fB £(-t)de

A description of the parameters of the subroutine WNEW and the method of
calling it are given in Sec. 6 o.f’this paper; the user who does not wish to
concern himself with the special powers or pitfalls of this subroutine should
skip directly to Secy 6. : “VQNJ Né\tb

The formulasl that this subroutine is based on are most powerful when the
integrand f does not have a singulaz(;ty (a singularity is a point where
df/dx does not exist) in the interior of the range of integration; however,
singularities at end-points of intervéls are allowed. Indeed, it is in the
cases where f has singularities at the end-points of the range of integratiw
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g that the subroutine W'\IEW is superior to other subroutines. Nde concede that
Gaussxan quadrature w'm.ch houses the singularities of the mte;rrand in the
weight function [1,2) may be superior to the WNEWmethods. However, no method [8]
is superior to the WNEW method if the exact nature of the si.rtgulariﬁies at
end points of intervals are unknown, or ignored. The subroutines may then
be used either directly, or be a part of a polyalgorithm ([4,5] which gets

' accurate results in spite of singularities of the integrand at end-points
of an interval of integration. '
We emphasize that the WNEW subroutine yields.accurate results in spite
of singularities at end points of an interval. The presence of singularities
at interior points of the interval of integrations amy considerably slow up

the rate of convergence. If the fimction f 1in the iﬁtegral
d

(1.5) J f(r)de
c .

(where ¢ or d may be either finite or ;'mfi.nite) has singularities in the
interval (c,d) , then in order to achieve best accuracy we strongly recommend
replacing (1.5) by a finite number of integrals with the property that each
only has singularities at the end-points of an interval. For example, if the
function £ in (1.5) has singularities at u and v , where ¢ <u<v<d,
then we recommend replacing (1.5) as follows:

v d

f(t)dt + J f(t)de
v

(1.6) Jd £(o)de = ju £ + |
Cc

(o u

Each of these integrals may now be accurately approximated by an appropriate

formula used to approxirate (1.2), (1.3) or (1.4).




The subroutine WNEW is based on the theory of [6,7]; see also the summary
paper [3]. In Sec. 2 we briefly sumarize the transformation used to transform
each of the integrals (1.2), (1.3) or (1.4) into (1.1), the error when the
trapezoidal formula is applied to (1.1), as well as a more accurate description
of the type of integrals for which the formulas for approximating (1.1), (1.2),
(1.3), and (1.4) are most effective.

Section 3 describes the basis of the algorithm by combining trapezoidal
and midordinate rules. In Sec. 4 we give some examples which illustrate the
application of the algorithm. In Sec. 5 we illustrat~ some pitfalls of the
algorithm, arising as a consequence of inaccurately computing the integrand
near a singularity. We also illustrate methods of circumwenting these pitfalls.

In Sec. 6 we give a precise description of the subroutine
WNEW(INTRUL,A,B,EPS, IP)
and of the role of the parameters in this subroutine. We also give a flow-

chart description of the main ideas of the subroutine.

In Sec. 7 we give an explicit FORTRAN listing of the subroutine WNEW.

L i




2. BASIC IDEAS, TRANSFORMATIONS AD ERROR.

The algorititms of the program are all based on the trapezoidal formula
(2.1) ' r fGOdx = h | f(kh)
~00 k=-=

vhere h >0 is the step size. 1If £ has no singularities on (-=,=) (e.g.
if a single formula is used to describe f on the whole interval (-=,=))
then it may be shown that the error of formula (2.1) satisfies

2.2 lerror’ < C oo/

where C and ¢ are positive constants that are independent of h . Thus if
h is replaced by h/2 , then the correct number of significant figures in
the approximation (2.1) doubles. Best results are achieved for (2.1) if in

addition to being analytic on R, f also satisfies the inequality
@2.3) €60 < cre !Xl

on the real line R, where C' and a are positive constants. In this case
relatively few points are required in the trapezoidal sum to achieve the

desired accuracy. If f decreases to zero at an algebraic rate, as t » tw
the formula (2.1) is still accurate, however in that case many more points

are required to achieve a desired accuracy. This latter situation can sometimes

be remedied by use of the transformation




2.4) t = xe

and then applying the trapezoidal formula to the transformed integral.

The integral (1.2) is transformed into the integral (1.1) by means of the

transformation
(2.5) t=A+e
i i
1. Applying (2.1) after making the transformation (2.5) results in the quadrature
-, :
: formula
: (2.6) | J f)de =h ] e+
o A k=-»
(We remark here, that
: B - ®  kh.,, kh
' @.7) I £(e)de = I f(-tyde =h | Pe@-&M ) |
! .
] The formula (2.6) is particularly accurate when used to approximate integrals
for which the integrands have an algebraic-type singularity at A , and which
E approach zero at an algebraic rate as x + » , such as integrals of the form
" Q0 00
[ ¥+ lae |, or J 37" (Log £ ) 1+t 2qe
0 0
o
: i If A =0, the ideal boundedness condition on f corresponding to (2.3) is
i f
- | crevlt , 0<t<1
N (2.8) LE(E) | < i}
I "1_» E cele t>1 ;
P,
a
|

PR——"




if (2.3) is satisfied then after making the transformation (2.5) (with A = Q)

one gets an integral over R for which the integrand satisfies (2.3).

The integral (1.3) is transformed into the integral (1.1) by means of the

transformation

2.9 ' t = A+ log{eX + (1+e2x)}5}

[ Afrer making the transformation (2.9) and applying (2.1), we get*

. r° 0 Il -k i
i | @10 | f@de=h [ Qe 2y e (a4 10gieD + V1420 )

A =0
F
This formula is best suited for the evaluation of integrals for which the
integrand f(t) has an algebraic-type singularity at t = A and which be-

haves in an oscillatory manner as t » » . Examples of such integrals are

Jf t™3e teos(3t)dt , or I logll - Sirtlt]e-tdt . If A=0 in (1.3),
0 . 0

the ideal boundedness condition on f corresponding to (2.3) :is

c
(2.11) JE@)] <
| B {C'e'ac t>1 ;

kh

e recormend care in evaluating log{ekh +v 1+e2!§i } when e is

small (e.g. if ekh <.1) . In this case, the formula

ok 14 B S K (%)JTTT. 1)) (23+1)kh
* logie " +V 1+e } = JO -'—l.+.C—2.}T - jZQ [CAR2 0N M

|
3 ’l“ This method »f corputation is built into the subroutine WNFL.




if f satisfies (2.11) then after making the transformation (2.9) (with A = Q)
one gets an integral over R. for which the integrand satisfies (2.3). If f

is oscillatory on (0,») but does not decrease to zero at the rate. (2.11), as

in the case of the evaluation of some semi-infinite transforms, such as

r t'l/ 3Jo(at:)dt: the formula (2.10) is still quite accurate. However, in this
0

case a large muber of points are required to achieve a desired accuracy. This

situation may be remedied” by an Euler technique, such as that described in [1].

skttt

The integral (1.4) is transformed into the integral (1.1) by means of the |

transformation

_ A+Be®
1+e8

(2.12) t

The boundedness condition on f corresponding to (2.3) is

(2.13) I£©] <l e-DB0*T , agecs
i Qhere C and o are positive constants. Making the transformation (2.12)

and then applying the trapezoidal formula, we get

B « Kh kh
2.14 £(t)de = (B-A)h e gAtBe
@19 L’\ ® ®H k=z—°° (l+ekh)2 1+e™

*Another method of circumventing this difficulty is to evaluate

I0) = J(oe')‘tt:"]‘/310(ac)dt for e.g. 1=1/2,1/4 and 1/8 , and then extrapolate

to the linmit A=0 . 4
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3.  BASIS OF ALGCRITHY.

Let us define Th(f) and Mh(f) by

r

'I'h(f) =h ] f(kh)
k=ww
3.1) $

M () =h 7 £((2k-1)h/2)

- 00

\

Thus the sum on the right hand side of (2.1) is Th(f) . Furthermore, it

follows that
3.2) Th/z(f) = 3[T, (B + M (D]

Let us start with h =1 (say) and then compute Th(f) . The bound (2.2)
shows that Th /2(f) has at least twice as many significant figures as Th(f) .
Next, let us compute Mh(f) , as well as the difference

0

3.3) T (DM (B)] = &/3 [*ZU B f<X)d’"Th<f)D

Thus, for sufficiently small ¢ ,

(

3.4
R

EGdx-T, ()] = ”P EGd3IT, (D) +%,(D]1] = 06D < ¢

In practice, we cannot sum all of the terms in the infinite sums (3.1).

The assurption (2.3) then offers a convenient stonping criteria. Suppose that
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ve stop the sumation in Th(f) for k> 0 when

~olNh

(3.5) Q)| ( = 0(e™™™) < /3

Then we may expect that

= 0™ = 0(e)
That is, we may expect the tail of the series to be of the same order of

magnitude as last included tem. In order to awoid stopping the algorithm

at or near a zero of f in practice, we make the more reliable test
(3.7) [£Gh) | + [£(QHDR)| + [E(@HDR) | < 5

Similarly, the sums on the right hand sides of (2.6), (2.10) and (2.14)
share the properties of the trapezoidal formula on the right hand side of (2.1),
under the assumptions of (2.8), (2.11) and (2.13) respectively, which correspond

to the assumption (2.3).




4.  EXAPLES.

The examples of this section illustrate the applications of each of the
formulas (2.1), (2.6), (2.10) and (2.14). Each of these formulas may be

represented as a single approximating forrula
L
%.1) [team=n ] wmeem
r k=-K

The results of various exarples are tabulated in Table 4.1. 1In this table we
tabulate the integral to be approximated, the exact value of the integral, the
method of guadrature used, EPS, a parameter specified by the user and which
is the ¢ of the previous section, K,L (see Eq. (4.1)) and the final
approximation achieved.

In the third last and second last entry of Table 4.1 it was not possible
to achieve the accuracy of e . This phenomenon occurs due to a pitfall in
computations; such pitfalls and ways of circumventing these are explained in

the next section.
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TABLE 4.1 EXAMPLES

"ABSOLUTE VALUE

1+

INTEGRAL METHOD EXACT EPS L ERROR IN
USED# ANSWER FINAL APPROXIMAT]
-
X iy Eq. (2.1) i 1077 18 | 18 <1077
10 | 36 | 3% <1076
X% -7 -7
X Eq. (2.14) 7= L 10 78 | a2 <10
0 10° | 180 | 108 <1076
jo X %oy Eq. (2.10) Ve 106 | 648 | 312 <1076
x-}é -11 12
X & Eq. (2.6) . 10 14 | 114 <10
j log[l- M@ e ¥gy | kg (2.10) |-3.045689266 | 1072 | 168 | 132 < 10716
50352 |
ﬁ
{
(3-2x-x%) dx Eq. (2.14) - 102 |12 |18 <107
-1 1077 21 | 3 ~ 1074 |
-
dx -10 -9/
& Eq. (2.14) . 10 180 | 108 =107
0 [x(4-x)]1° i‘
(L + ZeX)% -16 -1
er2e)” & Eq. (2.1) . 10 168 | 324 <10

*All corputations were carried out in double precisiom. floating point arithmetic.
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5. PITFALLS OF CO:PUTATION.

The accuracy of the formulas (2.1), (2.6) (2.10) and (2.14) in spite of
possible singularities at the end-points of an interval, is based on our being
able to accurately evaluate the integrand in a neighborhood of these singularities.

'This is especially important if (as is often the case for sinjular integrals)

a major contribution to the value of the integral occurs in a neighborhood of

the singularity.

The nead for exercising care is illustrated by considering the example

1
.1) I= 2J (3-2%-x2) By
1

<hich is orie of the exatoles in Table 4.1. Direct application of Eq. (2.14
- pp

to the approximation of I results in the formula

(5.2) =t I —éh———z (3-22, () -2, ()"}
I=-K (e +1)
where
(5.3) () = e—pa——kh' 1
%k e +1

The points zk(h) cluster near x =1 (resp. near x = -1) for k large
- and positive (resp. large and negative). Since 3-2:(-:(2 =0 when x=1,

this results in an error when substituting directly into (5.2) to evaluate

this quantity. For example, if h =% , k = 36 we find, working to 8
significant figures, that 236(‘/2) = ,9999 9997 , and that
‘ [3'27’1<(h)-7‘]2;(h)]-% = (.00 0()1?_)‘}5 = 2536.75L3. On the other hand, if x is

, .
. .
-— -— e e oo. .
. - . - ~
PRSI - SO DY SV U AR
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given by the right hand side of (5.3), we get | [3-2x—x2]'% = (%) (ekh +1) (2e1<h+ 1)'%
= 2864.8728, which is correct to 8 significant figures. We emphasize that

the discrepancy is due to the loss of significant figures in the evaluation of

zk(h) via the use of (5.3).

An additional error occurs in the evaluation of the sum in (5.2). In terms
of zk(h) , this sum may be written in the form :

L
(5.2)" 1am § (1- M B+2,®) (L - 7 0]

The trouwble occurs in the computer division of two numbers, both of which are

. . 2 .
close to zero; vhile the numerator term i{l-z (h)} expressed in the form

2ekh/ [l-t-ekh]2 is accurately evaluated, the denominator term is not, since the

quantity 1 - zk(h) only has 1 significant figure of accuracy.

For these reasons it was not possible to achieve an error < 10-5 in the

evaluation of I wvia (5.2).

If we replace x by 1-x in (5.1) we get the integral

2

by - x7]

When the approximated via (2.14), we get the formula

NN e R AR =~ e &

L
¥
.5 J=4 [t () -x2 (h)
;,— o e o
SR
= where

kn
S (5.6) M = 2o
* L+ oKD




e * rvr———
i
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The integral J is the second last integral in Table 4.1. The singularity of
the integrand which was at the point x =1 in (5.1) has now been transformed
to the point x =0 in (5.4). In contrast to the loss of significant figures
encountered in the evaluation of 7 (h) wvia (5.3), the evaluation of zk(h)
via (5.1) can be carried out quite accurately. Nevertheless, using double
precision, we were still only able to achieve 10 significant figures of
accuracy in the approxiration of J wvia (5.5). 'Iﬁe reason for this is the
same as that involving the discussion of (5.2)', narely requiring the computer
to evaluate the ratio of two very small computed quantities, each having a
slight error.

Finally, let us replace x in 5.1 by (ex-l)/(ex+ 1) . We then get the

integral
® e* Xy ~%
(5.7) CH= 2j & (1+26% Hax
-0 1+ e

We now approximate H wvia (2.1), to get

L . kh
kh, -%
(5.8) H=2h | —Sqr (1422
k=-K 1+e
In the expression (5.7), the singularity of the integrand has been analytically
removed. Ue thus get the integral in the last entry in Table 4.1. There is
now no problem in approximating H via (5.8) in double precision to get 16

significant figures of accuracy.

A b el i w3 e el 4k - .
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6. SUBROUTINE FOR AUTOMATIC INTEGRATION.

The FORTRAN subroutine for evaluating one of the integrals (1.1)-(1.4)

is called by the statement

WNEW(INTRVL,EPS,A,B,IP)

Definitions of Parameters and Required Function Routine.

(a) General.

INTRVL,A,B are used to designate the domain of integration,

and which integral of (1.1)-(1.4) is to be evaluated.

EPS is a small positive number, specified by the user. This

is the accuracy to which the integral is to be evaluated.
IP is an information parameter.

FN is the name of a user supplied function, having the
form FUNCTION FN(X) .

() More detailed descriptions.

INTRVL = 11  means that the integral (1.1) is to be evaluated.

user sets A=B =0 .

INTRVL = 2 means that the integral (1.2) is to be evaluated.

User sets A = desired numerical value as in (1.2), B =0,

INTRVL = 3 means that the integral (1.3) is to be evaluated.

User sets A = desired nurerical value as in (1.3), B=0.

INTRVL = 4 reans that the integral (1.4) is to be evaluated.

User defines the numerical values of A and B as in (1.4).




—
SN

_ IP is a p*int:ou;‘: information parameter selected by the user. It is
. possible to have the following lines printed, depending on values of IP
(0,1 or 2) chosen by the user:

(1) H LOWER UPPER T M

(ii) D9.4 K L D20.10 D20.10
(iii) CONVERGENCE , THE FINAL APPROXTMATION IS D30.17

(iv) DENSION EXCEEDED

If IP = 0: all printouts are suppressed; '

IP = 1: normal printout occurs. This includes lines (i) (a line of headings),

(ii) (one or more lines of nurbers wnder the headings (i)), and one
of (iii) or (iv) depending on whether or not convergence is
achievecd;

IP = 2: only line (iv) is printed, if convergence is not achieved.

Let us briefly explain these parameters in comnection with what the program
achieves.

Let us denote an arbitrary integral (1.1)-(1.4) by I .

The approximations T and M of I take the form

L 4
(6.1) TET)=h ) £(z, (h))
h kzz_KWk x

L
(6.2) M (=M) =h k_? . Vi, /2 E@zy 1 (0/2))
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;Ihe numerical values of H=h , K, L, T and M in line (ii) above are
the parameters in (6.1) and (6.2). The integers K and L are chosen by
the program (e.g. for T) such that

@£ )|
6.3 f | < EPS/3
(6.3) e |£(z,

' % (h) | £(z, ()] /3
6.4) < EPS
( ety K i
Notice tha:

Convergence occurs, and the printout (iii) follows if the two inequalities

(6.6) ITh-MhI < EPS/3
and

6.7 K+L+1 < 5000

are satisfied. In this case the nurber T, /2 given by (6.5) is printed out
in line (iii). If it is not possible to achieve the requirements (6.3), (6.4)
and (6.6) without violating (6.7), the error message (iv) results.

A "sumary'" flowchart of the integration routire is given on the following

page.
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SURROUTINE  UNEW --  FLOWCHART
H=1
... EPS3=EPS/3
' S e

‘ CALL GEN -- Generate nodes xi(h.)“énd é:b'rfesponding i
weights wi(h) for the upper sum

i=MaxLowd

Lo -
S . L MAXUP Ly | !
© Find MAXUP so that ¥/ Civp 1 wi(h)lf(xi(h)), < EPS3 .
\_ id
and compute U =Z‘L\XUP v, (h) £(x,(h))

R £ oo |
CALL GEN -- Generate nodes and corresponding weights %
i for the lower sum !

" T oA : !

MAXLOW+ '

| Find MAXLOW so that 3w l£(x; ()| < EPS3

X -1
’ = 28] b
and compute L= Zi=:!;\XLO{\"‘7i (Y £(x; (1))

——

T = U+1L1 "
v
i CALL GENM - Generate xi(h/l) and corresponding weights wi(h/Z)—g <
' i .
with 1 odd and satisfying 2 MAXLOW + 1 = {1 < 2 MAXUP -1 °
v
MAXUP-1
M = h vy, (h/2) £(xy,  (0/2))
... 1=MAXLOW .-
Pk ' :
LT = (T+M/2
e TN
Yes ‘ * / \
(T - M|~ EPS3 " ‘s .~ PRINT T --p— STOP
\\\., . - . H \ )
" No
L H = H/Z__.
v
Fe e
MAXUP = 2 MAXUP
MAXLOW = 2 MAXIOW
*
T = T
v
. : >
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7. FORTRAN LISTING OF WNEW.

In this section we give a detailed FORTRAN listing of the subroutine
WNEW. A number of comments are given, which should be helpful to the user

of this routine.




!

QOO0 000000000 0AN

SUBROUINE WNEW(INT,EPS,A,B,IP)
WNEW IS THE MATY SUBROUTINE FOR QUADRATURE.

INT=1 SIGNIFIES AN INFINITE INTERVAL - THE REAL LINE.
THEN SET A=B=0

INT=2 AND INT=3 SIGNIFIES A SEMI-INFINITE INTERVAL
(A.LT.X). THEN SET A AS THE LEFT HAND END POINT AND
B=0.

INT=4 SIGNIFIES A FINITE INTERVAL (A.LT.X.LT.B)
THEN SET A AS THE LEFT AND B AS THE RIGHT END
POINT.

EPS=DESIRED DIFFERENCE BETWEEN THE TRAPEZOIDAL AND
MIDPOTINT APPROXTMATIONS.

FN=USER SUPPLIED FUNCTION OF THE FORM 'FUNCTION Fi(X)'.

IP=0 SUPPRESSES ALL PRINTCLT.

IP=1 FOR NOR“AL PRIVTOLT.

IP=2 FOR ERROR INDICATION CiLY.

WNEW CALLS SUBROUTINE GEX FOR THE INITIAL

CALCULATICY OF THE TRAPEZQIZAT APPROXIMATION, AND
THEREAFTER CAILS SUBROUTINE GINI'rOR THE APPROMNIMATION
OF THE MIDPOINT APPROXTMATION.

DPLICIT DOURLE PRECISION (A-H,0-Z)
DIVENSION “EIT(5000),VAL(5000)

INITIALIZE DATA.

IF(IP.EQ.1) TYPE 900
H=1.0D0
EPS3=EPS/3.CDO
ML=0.0D0
StM2=0.0D0
D=DSQRT (2.0D0)
MAXP=48
NBEG=1
IF(INT.EQ. 1) SUM=FN(0.0D0)
IF (INT.EQ. 2) SUM=FN(A+1 . 0DO)
IF(INT.EQ. 3) S =FN(A+DLOG (L. ODOHD) ) /D
IF(INT.EQ.4)SUM=(B-A) *FN( (A+B) /2.0D0) /4.0D0
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20
30

35
36

40

50
60

70
75

INITIALIZE THE UPPER TAIL OF THE TRAPEZOIDAL APPROXTMATION

CALL GEN(INT,1,NBEG,MAXP,A,B,WEIT,VAL)
1=0

CHEK=0.0DO0

M=MAXP

DO 30 K=NBEG,M

I=I+1

EVALAWEIT (K) *FN(VAL(K) )
D=DABS (EVAL)

CHEK=CHEK+D

WELT (K)=EVAL

IF(I.LT.3) GO TO 30

IF (CHEK.GT.EPS3) GC TO 20
MAXP=K

NBEG=1

MAXL~MAXO (MAXP , 48)

G0 TO 35

C-EX=0.0D0

I=0

CONTTNUE

NBEG=MAXP+1

MAP=)AXPHIS

IF ((2*vAXP) .GT.5000) GO TO 110
GO TO 10

DO 36 K=MpXP,1,-1
SU2=SC2HEIT(K)

INITIALIZE THE LOWER TAIL OF THE TRAPEZOIDAL
APPROXTMATION.

CA%)L GEN(INT, 2,NBEG,MAXL,A,B,VEIT,VAL)
I=

CHEK=0.0D0

M=MAXL

DO 60 K=NBEG,M

I=1+1

EVALAWEIT (K) *FN (VAL(K) )

WEIT(K)=EVAL

D=DABS (EVAL)

CHEK=CHEK+D

IF(1.LT.3) GO TO 60
IF(CHEK.GT.EPS3) GO TO 50
MAKI=K

GO TO 70

CHEK=0.0D0

I=0

CONTINUE

NBEG=MAXL:+1

MAXIAMANLAHL8
IF((MAKLHAXP) . GT.5000) GO TO 110
GO TO 40

DO 75 K=MAXL,1,-1
SUML=SUMLHZIT(K)
SPRT=SUMLASUN 2481
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109

110

‘ 900
1 901
902
903

COMPUTE . THE MIDPOINT APPROXTMATION

MI=MAXL

}2=M1+1

NTRM=MAXPH AXL

VAXL=-MAYL

NTRN=2"%AXL

HOV2=H/2.0D0

CALL GENM(INT,NTRM,NTRN,HOV2,H,A,B,WEIT,VAL)
SUM=0.0D0

SUM1=0.0D0

DO 85 K=1,Ml

SMESMHETT (K)*FN(VAL(K) )

DO 86 K=NTR%,M2,-1
SUML=SUMLHEIT (K) *FN(VAL(K) )

SRESLHSRM

APXM=SIREH

TSTR= (APKT+API:") /2.0D0

IF(IP.EQ.1)TYPE 901 H,MAVL M3 APKT, APRYM
IF (DABS (APXT-APX) .LT.EPS3) GG TO 100

SET UP DATA FOR THE MENTITERATION
H=HOV2

VTR =2HNTR

YAKL=29ANL

MI=MAYL

M2=)141

VATP=2 P

APXT=TSTR

IF(NTRM.GT. 5000) GO TO 119

GO T0 80

REPORT CONVERGENCE
IF(IP.EQ.1)TYPE 902, TSTR
RETURK '

REPORT FATLURE TO OBTAIN CONVERGENCE
IF(IP.GT.0)IYPE 903
RETURN .

FORMAT(7X, 'H',7X, 'LOVER"' , 3X, 'UPPER', 11X, 'T",19X, 'M", /)

FORMAT(3¥,D9,4,218,2D20.10)

FORMAT (5X, ' CONVERGENCE , THE FINAL APPROXIMATION IS',D30.17)

FORMAT(5X, 'DIMENSIONS EXCEEDED')
END

SUBROUTTNE GEN(INT, INF,NBEG,MAX,A,B,WEIT,VAL)
DPLICIT DOUBLE PRECISION(A-H,0-Z)

DRENSION WEIT(5000) ,VAI(5000)
E=2.71828182845904523536D0

CALCULATION OF THE WEIGHTS A'D NNDFS FOR THE TRAPEZOIDAL

RULE




(@]

INFINITE INTERVAL
IF (INT.GE2) GO TO 10
IF(INF.EQ.2) GO TO 6
DO 5 K=NBEG,MAX
WEIT(K)=1.0D0

VAL (K)=DFLOAT (K)
CONTINUE

RETURN

6 DO 7 K=NBEG,MAX
WEIT(K)=1.0DO0
VAL (K)=-DFLOAT (K)
§ 7 CONTINUE

B . . RETURY

“ . C SEMI INFINITE INTERVAL
& S 10 WEIT(NBEG)=E**NBEG
, : D0 20 K=NBEG+L,MAX
WEITK)=WEIT(K-1)*E
20 CONTINUE
IF(INF.EQ.1) GO TO 22
DO 21 K=XBEG,MAX
21 WEIT (K)=1.0D0/WEIT (K)
22 IF(INT.EQ.3)GO TO 26
‘. IF(INT.EQ.4)GO TO 30
DO 25 R=X3EG,MAY.
VAL(K) == EIT(X

25 : va J..-T\.-E

RETURN

26 DO 29 K=NBEG,MAX
W=WEIT(K)
POM=DSQRT (W) *DSQRT (1 . 0D/ WHW)
IF(W.LT.0.1D0)GO TO 27
VAL (K)=A+DLOG (WHPOM)
GO TO 28
27 WL=Wd
W2=((-429.D0/30720. DO*W1+231. DO/13312. DO)*W1-63. DO/2816.DO)*Wl
- W2=(((W2+35.D0/1152.D0)*W1-5. DO/112.D0)*1+3.D0/40.D0) W1
- VAL(K)=( (W2-1.D0/6. DO)"‘WI+1 DO)*WHA
28 WEIT(K)=W/POM
29 CONTINUE

-
——

§ R T 4 YIRS A R S T AT

Y
LT 1

C FINITE INTERVAL
30 BMA=B-A
DO 40 K=NBEG,MAX
\ DENMEWELT (K)+1. 0DO
x ; VAL(K)=(A+B*YEIT(K) ) / DENM
WEIT (K)=5 A*WEIT (K) / (DEIMHDENM)

- .

40 CONTTMLE
RETURN
L END
- T
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SUBROUTINE GEU{(INT,NTRM,NTRN,HOV2,H,A,B,WEIT,VAL)
TMPLICIT DOUBLE PRECISION(A-H,0-Z)
DIMENSION WEIT(3000) ,VAL(5000)

CALCULATION OF THE WEIGHTS AND NODES FOR THE MIDPOINT RULE

INFINITE INVERAL
IF(INT.CE.2) GO TO 20
WEIT(1)=1.0D0

VAL (1)=DFLOAT (L:HNTRN) *HOV2 .
DO 10 K=2,NTR{
WEIT(K)=1.0D0 - :
VAL (K)=VAL(K-1)+
CONTINUE *
RETURY *

e ST ST

S22 DFINTIE LTTERVAL
EXPH=DEXP i)
WEIT(1)=DEXP (CFLOAT (1-HITRY) *HOV2)

D0 30 K=2,NIR
WEIT(K)=WEIT (K-1)*EXPH
CONTINLE

IF(INT.EQ.3) GO IO 36
IF(INT.EQ.4) GO 10 40
DO 35 K=1,NTRI :
VALK)=a+ 170 ‘

DO 39 X=1,NTR
W=WEIT(K)

W=l

W3=DSQRT (1. ODOHL)

IF(W.LT.0.1D0) GO TO 37

VAL (K)=DLOG (WHi3) +A

GO TO 38 :
W2=((-429.D0/ 30720 DO*W1+231 . D0/13312. DO)*W1-63. D0/ 2816 . DO)*Wl
W2=(( (W2+35.D0/1152. D0)*#d1-5. D0/ 112. DO)*W1+3. DO/ 40. DO) Wl
VAL(K)=( (W2-1.D0/6.D0)*W1+1 . ODO) MHA

WETT (K)=W/W3

CONTINUE

RETURK

FINITE INTERVAL

BMA=B-A

DO 50 K=1,NTRM

DENM-WEIT (X)+1.9D0

VAL (K)=(A+B* (D201-1.0D9) ) /Dt
WEIT(K)=BMA% (DENM-1. ONN) / (DENMDFIM)
CONTINUE

RETURN

ED
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